División exacta e inexacta

¿Qué es una división exacta?

Una división se considera exacta si al multiplicar el divisor por el cociente se obtiene el dividendo y, al mismo tiempo, el residuo obtenido es igual a cero.

Ejemplo

Una manera sencilla y fácil de verificar si una división es exacta es mediante el residuo, el cual en este caso se iguala a cero.

División exacta e inexacta

¿Qué es una división inexacta?

Se considera que una división es inexacta cuando al multiplicar el divisor por el cociente se obtiene un valor menor que el dividendo, y además se obtiene un residuo mayor que cero.

Ejemplo

Una manera fácil y sencilla de verificar si una división es inexacta es mediante el residuo, el cual en este caso es mayor que cero. En consecuencia, es posible continuar dividiendo hasta llegar a la parte decimal.

División exacta e inexacta

División con fracción decimal exacta

Al resolver una división inexacta hasta su parte decimal, es posible obtener una fracción decimal exacta, es decir, que la parte decimal del cociente tenga un número finito de cifras.

Ejemplos

Al resolver las siguientes divisiones hasta la parte decimal, se obtuvo un conjunto finito de cifras en la fracción decimal del cociente.

3 ÷ 5 = 0.6


7 ÷ 20 = 0.35

1 ÷ 2 = 0.5

División con fracción decimal inexacta

Al resolver una división inexacta hasta su parte decimal, es posible obtener una fracción decimal inexacta, es decir, que la parte decimal del cociente contendrá una o varias cifras que se repiten indefinidamente en el mismo orden.

Ejemplos

Al resolver las siguientes divisiones hasta su parte decimal, se obtiene un conjunto infinito de cifras que se repiten en un patrón específico.

Para indicar que se obtuvo una división con fracción decimal periódica, se utilizan paréntesis que encierran las cifras que se repiten, colocados encima de ellas o se escriben puntos suspensivos al final de las primeras cifras decimales obtenidas.

1 ÷ 3 = 0.333333…


1 ÷ 12 = 0.08333…

Tutoriales de divisiones

Contenido sugerido